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ERROR ANALYSIS O F  BLNARY RA’IE MULTIPLIER 

by George J. Moshos 

L e w i s  Research Center 

SUMMARY 

The binary r a t e  mult ipl ier  i s  studied as a means of achieving approximate 
multiplication. The difference between the ac tua l  and desired output i s  defined 
a s  the e r ror  of the binary r a t e  mult ipl ier ,  and closed formulas a r e  obtained 
f o r  expressing this e r ro r  i n  exp l i c i t  form depending on the s t a r t i n g  conditions 
o f . t h e  binary r a t e  mult ipl ier  counter. A s  a r e s u l t  of analyzing these e r ror  
formulas, error  bounds a r e  obtained. 

INTROLUCTION 

An i n t eg ra l  pa r t  of  many spec ia l  purpose d i g i t a l  computers used f o r  r e a l  
time control  i s  the binary r a t e  mult ipl ier  (BRM) (e.g. ,  r e f s .  1 t o  4 ) .  In  
these applications t h i s  un i t  is used as a means of scal ing down a pulse stream 
t o  some specified f rac t ion .  A logic  diagram of a BRM, which i s  b u i l t  out of 
the standard logic  elements shown in  f igure 1, is shown i n  f igure  2 ( a ) .  The 
NOR element shown i n  f igure l ( a )  may have various number of inputs.  
a l l e l  l i nes  shown on one of the inputs of f igure  l ( c )  a r e  included t o  indicate 
t h a t  the Am c i r c u i t  i s  intended t o  a c t  as a pulse gate dependent on the l e v e l  
s e t t i ng  of the other l i n e .  The following br ief  description explains the opera- 
t ions on the BRM. 

The par- 

The input pulse stream i s  applied d i r e c t l y t o  the binary counter whose value 
i s  denoted by xnxn-l . . . x2x1. Each f l i p - f lop  of the  counter i s  operated as 
a t r igger .  For every t-wo input pulses t o  a t r igger ,  two output pulses a r e  pro- 
duced; one pulse when the f l i p - f lop  makes a 0 t o  1 trans i t ion ,  ca l led  an 
a pulse, and one when the  f l i p - f lop  makes a 1 to 0 t rans i t ion ,  ca l led  a p pulse. 
The p pulse is  used t o  t r igger  the next stage of the counter. The a. pulses a re  
gated through AND gates and mixed through a NOR element t o  produce the desired 
f rac t ion  of the input pulses. This simple mixing technique may be used because 
the a pulses from the various stages are separated i n  time from each other.  
This timing fac tor  i s  shown i n  f igure 2 ( b ) .  

T h i s  un i t  may be used t o  achieve approximate multiplication. In  particu- 
lar, i f  Ax i s  the  number of input pulses and y i s  a binary number l e s s  than 
1, &, the number of output pulses, may be s t a t ed  quant i ta t ively a s  
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(a) Trigger flip-flop. (b) NOR. (c) AND. 

Figure 1. - Logic elements. 
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(b) Timing diagram. 

Figure 2. - Binary rate multiplier. 

The difference between the ac tua l  output of the BRM and Az, as given by equa- 
t ion  (l), i s  defined as the e r ror  of the un i t .  
of e r ror  is exp l i c i t l y  given and studied. The analysis  of the BRM i s  begun by 
deriving the  approximate r e l a t ion  shown i n  equation (1). 

In  t h i s  report ,  the  formulation 

BINARY RATE MULTIPLIER 

The quant i ta t ive r e l a t ion  of a BRM may be expressed as follows: If Ax 

This mult ipl icat ive r e l a t ion  w i l l  remain 
i s  the  number of input pulses, the number of output pulses produced by the kth 
stage of the counter i s  
va l id  over any in t e rva l  f o r  which & is a multiple of Zk pulses. If y-k i s  
the  l e v e l  s e t t i n g  of the  kth stage AND gate,  t he  number of output pulses tha t  

Ax 2-k. 
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may be gated through t h i s  stage w i l l  be 
from the various stages a re  simply mixed, the number of output pulses Az of 
an Ax, which i s  a multiple of 2n pulses, w i l l  
be the  sum of a l l  the  pulses gated through a l l  the stages.  This output is  

y-k Ax 2'k. Since the  output pulses 

n-stage BRM over any in t e rva l  

The quantity 

n 

i=l 
Az = Ax y-i2-i  

i s  a binary number. Therefore, equation ( 2 )  may 

be wr i t ten  as 
& = y &  

where the range of y i s  

0 < y 5 1 - 2-n - 
i n  s teps  of 2-n. 

If y is constant over a & i n t e rva l  of zn pul 

i=l 

es, the output 

(3) 

iven 
by equation (1) is  exact. If y i s  constant over a Ax i n t e rva l  of l e s s  
than 2n pulses, however, t h i s  mult ipl icat ive r e l a t ion  may not be val id .  In  
t h i s  l a t t e r  case, the ac tua l  output depends not only on the values of y and 
Cuc but a l s o  on the s t a r t i n g  value of the BRM counter. If the  output from a 
machine, whose BRM counter s t a r t i n g  value i s  hX,, it can xs, is  denoted by 

- 
be shown t h a t  the average output over a l l  of the 
given by equation (1). This can be demoEtrated as follows: If Az is the  
average output over a l l  these machines, Az 

2n possible machines is  a l s o  

is, by def ini t ion,  

,n-1 

( 4 )  
- xs=o 
@7i= 

Zn 
2n-l  

given by equation ( 4 )  i s  the t o t a l  pulse output over the 
sum?xs x =  S 

2n d i f fe ren t  possible machines when each machine receives Ax input pulses 
and i t s  AND gates a r e  s e t  t o  the value y. 
a t rans i t ions  produced by these 
by a s ingle  machine with 2n Ax successive input pulses. For example, the  a 
t r ans i t i on  ending with counter value x is a t ta ined  Ax t i m e s  (once by each 
of the Cuc machines whose s t a r t i n g  value is pr ior  t o  x i n  the counting se- 
quence) of the Zn machines used i n  the average and a l s o  Ax times when 2n Ax 
successive input pulses a r e  applied t o  a s ingle  machine (s ince each counter 
value i s  traversed Ax t i m e s  i n  t'nis case) .  Therefore, the t o t a l  pulse output 
over a l l  the  2n possible machines with each receiving Ax input pulses i s  
equal t o  the pulse output of a s ingle  machine receiving 
In  this l a t t e r  case the pulse output is  a l s o  given by equation (1) since the  
input pulse in t e rva l  is  a multiple of 2n pulses.  Therefore, 

It w i l l  be observed tha t  t he  
2n machines a r e  the same as the  ones produced 

2n Ax input pulses. 
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2n-l  

xs=o 
> 1 A z X S  = y 2n Ax ( 5 )  

Combining equations (4) and (5) 
yields 

E = y k  ( 6 )  

=I 

=I 0 

er 

n 

I 
m 

MULTIPLICATION ERROR FOEMXGAS c 

The er ror  f o r  the  BRM m y  be 

y Cur (i .e. ,  the value pre- 1 
I I 
I 
1 
I 
I I 

defined as the ac tua l  output 
minus 
dicted by eq. (1) ) . Since the  
ac tua l  output changes only when 
the input pulses arr ive,  it i s  
only necessary t o  consider the  
e r ro r  a t  these d iscre te  times. 
For example, f igure 3 gives the  
output f o r  a three-stage BRM to-  
gether with the values predicted 
by equation (1) when the  BRM 
counter s t a r t i ng  value is zero 
and y = .101. The difference 
between these two curves is  the  

defined er ror .  Yet, i n  discussing error ,  the e r ro r  value w i l l  be given only 
when the abscissa is  d iscre te  values such as 0, 1, 2, e t c .  (which correspond t o  
the  BRM counter values) .  
pulse is  produced, the  e r ror  may change by one quanta. Therefore, it i s  neces- 
sary t o  dis t inguish between the e r ror  immediately before the output pulse and 
the  e r ror  immediately a f t e r  the output pulse. 
value i s  zero, these two values of the e r ro r  w i l l  be denoted by F and E, 
respectively.  When the BRM counter s t a r t i ng  value is arb i t ra ry ,  the  s t a r t i n g  
value must a l s o  enter  i n to  the e r ror  formula as a parameter. The er rors  w i l l  
be denoted pr ior  t o  and a f t e r  the a r r i v a l  of the output pulse as 
respectively.  It w i l l  be noted that the  e r ror  defined t h i s  way makes E a 
spec ia l  case of G, and F a spec ia l  case of H. Nevertheless, t h i s  d i s t inc-  
t i o n  is maintained, since it i s  convenient f o r  our subsequent discussion. 

6 0 2 4 
BRM counter value 

Figure 3. - Multiplication error resulting from y = .  101. 

Moreover, it w i l l  be observed t h a t  when an output 

When the  BFW counter s t a r t i n g  

H and G, 

S ta r t ing  the BRM counter with zero gives the  def in i t ion  of the e r ro r  E 
as the ac tua l  output a f t e r  the output pulses a r e  generated, minus y Ax. This 
difference, when only one s tage of an 
pressed systematically i n  tabular form as shown i n  t ab le  I. 

n-stage BRM is gated by y, can be ex- 
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TABLE I. - MULTIPLICATION ERROR 

0 1 
1 0  . . .  0 0 0  
1 0  . . . 0 0 1 

. : . 1 1  1 

1 1  . . .  1 1 1  

E OF BRM WHEN ONE STAGE IS MTED 

- (2k-1 - 1)/2k 
(2k-1 - 1)/2k 

l/2k 

1/2 

Y-1 = 1 

Xl 

0 
1 

E 

0 
112 

Y-2 = 1 

X2Xl 

0 0  
0 1  
1 0  
1 1  

E 

0 
-114 
214 
1/4 

Y-3 = 1 

x3x2x1 

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

E 

0 
-1/8 
-2/8 
- 318 
418 
318 
218 
1/8 

E 

0 
4 2 k  
-2/2k 

An inspection of t h i s  table shows t h a t  the e r ro r  associated with the various 
stages of a BRM may be expressed more concisely i n  algebraic form as shown i n  
tab le  11. 

TABLE 11. - MULTIPLICATION ERROR E 

Stage 

1 
2 
3 

k 

E 

For an a r b i t r a r y  value of y, t h e  value of E is the  l i n e a r  combination 
This b i l inear  form is  shown i n  equation ( 7 )  of the values shown i n  tab le  11. 

for an n-stage BRM. The element subscripts of the  Boolean vectors x and y 
(i.e.,  vectors whose elements a r e  0 or l), which are shown i n  t h i s  equation, 
correspond t o  the stage numbers of the  BRM shown i n  figure 1: 
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0 0  
1 1 
1 0 
0 1 

0 0  0 
0 1 -1/4 
1 0 -2/4 
1 1 114 

1 
4 

-- 1 
8 

-- 1 
16  

1 
8 

-- 

-- 

1 
211-1 

-- 1 
2n 

1 
2n- l  

-- 

-- 

1 
8 

1 
4 

1 
2 

-- 

-- 

- 

. . .  
1 
2 
- 1 

4 
-- 1 

2n-2 
-- . . .  

1 
2 
- 1 

4 
-- . . .  
1 
2 
- . . .  

M =  

1 
2 
- 1 

4 
-- 

1 
2 
- 

0 

In  the formulation of E, the maximum values of the output of the BRMwere 
re f lec ted  a t  the  points of discont inui t ies .  It w i l l  be observed tha t  j u s t  
p r ior  t o  these points the e r ror  is one quanta less than t h a t  shown by A 
formulation of F, i n  which the minimum values a re  re f lec ted  a t  the points of 
discont inui t ies ,  can be obtained i n  a manner similar t o  t h a t  f o r  obtaining 
The quantity F, when only one stage of an n-stage BRM is  gated by y, i s  
shown i n  tabular form i n  tab le  I11 (only a few cases a re  exhibited).  

E. 

E. 

TABJ3 111. - MULTIPLICATION ERROR F WHEN 

ONLY ONE STAGE IS GATED 

1 

Y-3 = 1 

c3cZc1 1 x3xZx1 F 

0 0 0  
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

0 
-1/8 
- 2 / 8  
- 3/8 
- 4/8 

3 / 8  
2/8 
118 
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Comparing table I11 with table I shows that the values of F equal the 
values of E except at the points where the discontinuity occurs. At these 
points, F equals -1/2, while the corresponding value of E equals +1/2. The 
values of C shown in table I11 correspond to the 2 ' s  complement of the x 
values. It will be observed that the values of F are identical in terms of 
C to the negative values of E. Consequently, it can be asserted that F in 
terms of C is just the negative of E: 

An example will help clarify these formulas. In this example the value of 
y is .101, and the values of E and F are calculated for successive BRM 
counter values that are notated by the subscripts on E and F: ':3 101 

011 

-1/4 
112 
0 ('I 

1/4 
518 

This example is shown in graphical form in figure 3 (p. 4). 

When a BRM counter starts out with an arbitrary value, the starting value 
must enter into the error formula as a parameter. These error formulas are 
given explicitly by equations (10) and (11). 
reflect the maximum (denoted by H) values of the 
actual output at the points of discontinuities. In these formulations, x and 
xs represent the value and the initial value of the counter, and C and Cs 
represents the 2's complements of these values. The subscripts on those lite- 
rals represent, as before, the stage of the BRM. In equation (111, XSR identi- 
fies the rightmost (i.e., lowest order) counter bit, whose value is 1; for 
example, for the counter value 100, XSRY-R = Y,~, for counter value Oll, 
XSRY-R = Y-1, etc: 

In particular, these equations 
G )  and minimum (denoted by 
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"he following two examples i l l u s t r a t e  equations (10) and (11) f o r  y = .01 
and ( x s ~ , x s ~ )  = ( 0 , l )  and are calculated f o r  successive BRM counter values t h a t  
a r e  notated by the subscripts on G and H: 

In  these examples it w i l l  be noted t h a t  ( x i  - x s i )  may be 0, 1, or -1. 

MULTIPLICATION ERROR BOUNDS 

The maximum pos i t ive  e r ro r  and the mini" negative e r ror  f o r  a n s tage 
BRMwhose counter starts out with zero may be obtained by an analysis  of equa- 
t ions ( 7 )  and ( 9 ) ,  respectively.  These values w i l l  then form a bound of the  
deviation of the BRM from t h a t  of exact multiplication. This analysis  is pre- 
sented i n  appendix A. It is  shown i n  that analysis  t h a t  f o r  an n-stage BRM 
these values are: 

Fmin(n) = -- 7 - 2 - (-on 
18 6 9 . 2n 

Equation ( 1 2 )  i s  p lo t ted  together with equation (13) i n  figure 4( a ) .  As  a 
by-product of developing equations ( 1 2 )  and (13), the  points where these values 
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2 
3 
4 
5 
6 
7 

E 
2 
3 
4 
5 
6 
7 

~ 

x7 . . . x1 

2 4 6 8 
Number 

y-1 . . . y-7 

of stages, n 

(a) Zero starting. (b) Arbitrary starting. 

Figure 4. - Multiplication error bounds. 

TABLE IV. - x AND y VALUES FOR E,, 

x7 . . . XI 
11 
101 
loll 
10101 
101011 
1010101 

11 
101 
1101 
10101 
110101 
LO10101 

11 
lll 
1101 
11011 
110101 
1101011 

11 
111 
loll 
11011 
101011 
11010ll 

TABLE V. - x AND y VALUES FOR Fmin 

x1 x7 . . 
01 

O l l  
0101 
01011 
010101 
0101011 

y-1 - ' Y-7 11x7 . . . x1 
11 
101 
llo1 
10101 
110101 
1010101 

01 
001 
0011 
00101 
001011 
0010101 

Emax 

314 
7/8 
17/16 
39/32 
89/64 
199/128 

11 
1ll 
1011 
11011 
101011 
11010ll 

-3/4 
- 7 / 8  
-17/16 
-39/32 
-89/64 

- 199/128 
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TABLE VI. - X, XS, AND y VALUES FOR GmX 

01 
001 
0101 
00101 
010101 
0010101 

10101 
6 I 110101 

* xl x7 . . 
~. .. 

10 
110 
1010 
11010 
101010 
1101010 

Y - 1  * * - Y-7 

01 
011 
0101 
01011 
010101 
0101011 

xs7 * . xsl 
00 
010 
0010 
01010 
001010 
0101010 

* Xl x7 . . 
l.l 
101 
1101 
10101 
ll0101 
1010101 

TABLE VIIS - X, XS, AND y VALUES FOR Gin 
~ 

x7 . . - x1 - . -~ 

01 
011 

o o l l  
01011 
001011 
0101011 
-~ 

Y - 1  * * - Y-7 
- 

ll 
101 
loll 
10101 
101oll 
1010101 

~- ~.. 

x7 . . . x1 
- -  

01 
001 
0101 
00101 
010101 
0010101 

-~ 

Y-1 - * - Y-7 

11 
101 
loll 
10101 
101011 
1010101 

Gm51X 

314 
9/8 
23/16 
57/32 
3131121 13.5164 

11 
111 
1101 
11011 
110101 
1101011 

-312 
-7/4 

-1718 
-39116 

-199164 
-89/32 

occurred were found. These points a re  tabulated f o r  various BRM i n  tab les  N 
and V.  

Appendix B presents an analysis  of a BRM whose counter starts out w i t h  an 
The basis of t h i s  analysis  is  t o  use equation (10) t o  obtain a rb i t r a ry  value. 

the  maxi“ posi t ive e r ror  and t o  use equation (ll) t o  obtain the minimum nega- 
t i v e  e r ror .  For an n-stage BRMthese values a r e  

Gma,(n) = - 1 + - n - (-lIn 
9 3 9 . p  

7 n (-11~ G i n ( n )  = - 9  - - - 
3 9 . 2n-l  

These values form a bound f o r  the generated round-off e r ror .  Fortunately, 
only two maximum and two minimum values may occur f o r  a BRM (for 
therefore one can expect be t t e r  r e s u l t s  than would be predicted by these values.  
These values are p lo t ted  i n  f igure  4(b) and a r e  a l so  presented together w i t h  t he  
points a t  which they occur i n  tables  V I  and V I I .  

n > 2 ) ,  and 

The problem t h a t  has been considered i n  appendixes A and B and i n  t h i s  
section is  i l l u s t r a t e d  i n  f igure 5. The ac tua l  and desired outputs for a two- 
and a three-stage BRM a re  p lo t ted  i n  these f igures  fo r  a l l  s t a r t i ng  values. 
is  i l l u s t r a t ed ,  f inding the multiplication e r ro r  bounds by graphical means is 
not t r i v i a l .  The points  labeled Emax, Fmill, k x ,  and Hmin i n  these simple 
cases agree w i t h  those predicted i n  appendixes A and B. 

As 

!The er ror  formulas arr ived a t  i n  appendixes A and B can be a r r ived  a t  d i -  
r e c t l y  by use of the  exclusive OR operator. It w a s  not used, however, because 

10 



I 

Gmax 
Y=~/~€FI B i  

0 2 0  1 3  1 2 0 2 3  1 3  

y = 718 

y = 618 

y 518 

BRM counter, x 
(a) Two stage. 

Ik-1ILi y = 318 

y = 218 

y = 118 1-m 
0 2 4 6 0  

IlzFE€T 
1 3 5 7 1  

LlTEm 
2 4 6 0 2  

-A 
3 5 7 1 3  

BRM counter, x 

(b) Three stage. 

Figure 5. - Output of BRM for all starting values. 
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y = 618 

y = 518 

y=l/8- 
4 6 0 2 4 5 7 1 3 5 6 0 2 4 6 7 1 3 5 7  

BRM counter, x 

(b) Concluded. 

Figure 5. - Concluded. 

some of the intermediate results obtained in the appendixes are interesting in 
their own right and wmld be bypassed by this alternate method of proof. 

CONCLUSIONS 

The BRM has been shown to achieve approximate multiplication. The error 
has been defined as the difference between the actual output and y Ax and is 
formulated as a bilinear expression. This error is shown to be dependent on the 
starting conditions of the BRM counter. The error formulas presented are ana- 
lyzed in detail and explicit error bounds are given. These bounds are shown to 
increase by approximately 1/6 of a quanta per stage when the BRM counter start- 
ing value is zero, and by approximately 1/3 of a quanta per stage when the BRM 
counter starting value is arbitrary. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 31, 1965. 
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APPENDIX A 

IWTTIPLICATION ERROR BOUNDS (ZERO STARTING) 

I n  t h i s  section the  e r ror  equation of an n-stage BRMwhose counter starts 
with zero w i l l  be analyzed with the objective of obtaining t i g h t  e r ror  bounds. 
Nevertheless, some of the  intermediate r e s u l t s  t h a t  w i l l  'be obtained i n  t h i s  
sect ion a re  in te res t ing  i n  t h e i r  own r igh t .  Because t h i s  analysis  is complex, 
formal methods w i l l  be used i n  t h i s  analysis.  
equation ( 7 )  t o  f ind  the points where the m a x i m u m  posi t ive value is a t ta ined  
and then evaluate the  equation a t  these points.  
t i o n  ( 9 )  w i l l  be used t o  f ind  the m i n i m u m  negative value. 

The basic out l ine is t o  use 

In a similar manner, equa- 

The analysis is  begun by s t a t i n g  and proving Lemma A.l. 

Lemma A . l :  A su f f i c i en t  condition f o r  E given by equation ( 7 )  t o  a t t a i n  i ts  
I maximum value is that xi = ymi. 

Equation ( 7 )  may be rewri t ten as a b i l inear  expression s o  t h a t  t he  terms which 
a re  dependent on e i the r  x i  or y,i a r e  grouped together.  The quantity A i n  
the resu l tan t  expression i s  independent of e i the r  X i  or y-i: 

By d i r ec t  evaluation, the value of t h i s  expression is  as follows: 

E(0 ,O)  = A 

Moreover, fo r  the spec i f ic  case when i i s  n, the value of equation ( A l )  is 

E(0,O) = A 

E ( 0 , l )  = A - - -  . . + - x $  1 
211-1 

E ( 1 , l )  = A + - 1 - F(, 1 1  1 + . . . + - 
2 (A3  1 
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This Lemma is proved by observing t h a t  the value of E when xi = = o  
i s  always greater  than or  equal t o  the value of E i n  both cases when %Ii# 7-i 
and t h a t  for  the nth component t'ne value of 
% = y-n = 1. 
similarly shown t h a t  t h i s  is  a l s o  t rue  f o r  t he  first component. 

E is always greater  when 
Although it w a s  not needed i n  the  proof of t h i s  Lemma, it can be 

Based on t h i s  Lemma, t he  maximum value of equation ( 7 )  w i l l  be obtained by 
finding the  maximum of the  quadratic form expression: 

Theorem A . l :  For a l l  values of the components X i ,  

Q ( ~ , x z , x ~  - > Q(o ,x2 ,x3  - 
This theorem follows d i r ec t ly  from the proof of Lemma A . l .  

This theorem follows d i r ec t ly  from the proof of Lemma A . l .  

may be wri t ten equivalently a s  

14 



where 

1 
4 

-- 

1 1  1 
2 23 2n-Z 

1 
e 

1 
4 

-- 

-- 

. . .  . . .  

. . .  . . .  

1 1  1 
2 2i p-i+l 
- _ - - -  . . .  

Expanding equation (A6) and using the ident i ty  

xj  x i x j  - x i x j  = x i  - 
t o  simplify the cross product t e r m s  give a typ ica l  term 

X i  as 

Since ( x i  + xi) = 1, equation (A6) i s  independent of the 
contribution from %his term i s  

X i  variable,  and the 

1 
.$-i+l 2i 

- -  1 

Similarly the contribution t o  the difference expressed i n  equation (A6) 
from the  term involving ~ - ~ + l  is  

1 1 - -  
2i zn-i+l  

Consequently, the  contribution t o  the difference expressed by equation (A6) by 
each element may be paired by the contribution from another element t o  cancel 
each other out of the expression. If n is odd, the  middle term cannot be 
paired. 
t i o n  is 

But, s ince t h i s  is  the ( n  + 1)/2 term, by equation (A9), i t s  contribu- 

15 
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Therefore, the  value of the  difference shown by equation ( A 5 )  is equal t o  
zero. This implies t h a t  

- 
Q ( 1 9 ~ 2  x n - l j l )  = Q(1,X-Z 

Lema A.2: For v = ~ 2 ~ x 3  . . . X i  and a = 1,0,1,0 . . . 1,0 
Q( 1,v, O,a,  1) 2 Q( l ,v , l , a ,  1) 

- 
where v and a a r e  t h e  component by component complement of v and a, 
respectively.  

By Theorem A.3 it is noted t h a t  
- -  

Q(l ,v , l , a , l )  = Q(l,v,O,a,l) 

TLierefore, the  difference between the two quadratic forms of the  Lemma can be 
expressed as 

- - -  
6 = Q(l,v,O,a,l) - Q(l,v,O,a,l) ( A l l )  

Par t i t ioning the M matrix of equation (All) s o  that M i  and M2 are compat- 
i b l e  with the  vectors gives 6 as 

But it w i l l  be noted t h a t  

Theref ore 

It w i l l  now be proved by induction on the length of a t h a t  6 > 0. It 
may be immediately ver i f ied  that 6 = 0 fo r  a of length zero. Assume t h a t  
6k 2 0, where 6k is  the  value of 6 when a is of length 2k. It w i l l  now 
be ver i f ied  t h a t  6 k + l ?  0: 

16 



%+, = s, + 

+ 

The 0 ' s  and 1's i n  equation (A14) a re  subscripted t o  show t h e i r  posi t ion 
i n  the vector, and t h e  vector i t s e l f  i s  displayed as a column rather  than a row 
i n  order t o  show the correspondence between the  terms t h a t  must be multiplied 
t o  form the value. 

Multiplying out the  terms of equation (A14) yields  

But, by d i r ec t  evaluation 

17 



1 1 2 1 <-=- 
22k+4 2 i -1  22k+4 22k+3 - x i - j  + - - 

j =O 

Therefore, $+l > 0. 

Lemma A.3: For v = x2,x3 . . . x i  and a = 1,0,1,0 . . . 1,0 

Q(l,T,l,O,a,l) 2 Q ( l , V , O , O , a , l )  

where v and a a r e  defined as i n  Lemma A.2. 

Proceeding i n  a manner similar t o  Lemma A.2 shows by Theorem A.3 t h a t  

Q(l,v,O,O,a,l) = Q(l,;,l,l,z,l) 
Therefore, the difference between the two quadratic forms of the Lemma can be 
expressed as 

- 
(A16 

- 
6 = Q(l,v,l ,O,a,l)  - Q ( l , v , l , l , z , l )  

Par t i t ion ing  the M matrix of equation (Al.6) so  t h a t  MI and $ are 
compatible with the vectors gives 6 i n  the form 

6 = + (l,T,l,O,a,l)M~ 

But expanding the  f i rs t  and t h i r d  terms of equation (A17) shows t h a t  

(l, 'ii,l,O,a,l)Ml = (l, ' i i ,l ,l ,Z,l)Ml 

Therefore, 

If 6k i s  used t o  denote the value of 6 when a i s  of length 2k it w i l l  
now be proved by induction on the length of a that 

1 -  1 -  > 0 ( A 1 9 )  
x2 + 2i+2k+2 i+k+l 

x i -1  + . . . + 

18 
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F i r s t ,  note t h a t  for a of length zero 

- - 
= L X i + x & + .  . . +1 +1 

23 24 2 i + 1  x2 2 i+2  

The notation used i n  equation (A20) i s  s i m i l a r  t o  t ha t  used i n  proving 
Lemma A.2. Assume that 6k > 0. It w i l l  now be shown t h a t  6k+l > 0 ;  

%+1= %+ + 

+ + 
G+l 
11+2 
01+3 
11+4 

Oi+2k+l 
li+2k+2 

h2 i+2k+ "\ 

Multiplying equation ( A 2 1 )  gives 
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Using equation (A19) gives the  r igh t  s ide  of equation (A22) as 

1 -  - -  1 -  1 -  1 
2i+2k+l x2 2i+2k+2 22k+5 xi - >- . +  22k+3 X i  + a 

Theorem A-.4: There ex i s t s  a ++ such t h a t  fo r  a l l  v 

Q( I,++, O,a ,  1) 2 Q( l ,v ,xi+l ,  a, 1) 

where v and a a r e  defined as before. 

F i r s t ,  note t h a t  

then there would e x i s t  a +* such tha t  for a l l  v 

Q( l ,$+*,O,a,l) > - Q( l , v , l , a , l )  because, suppose it were fa l se ,  * 

Q(l,$*,l ,a, l)  > Q(l,v,O,a,l)  

But  from Lemma A.2 

Therefore, a contradiction ex i s t s .  Moreover, note t h a t  

** 
Q( l ,++*,O,a,l) 2 Q(l,v,O,a,l) 

t h a t  is, there i s  a la rges t .  Therefore, Theorem A . 4  is proved by choosing ** 
e i the r  T,+* or v** f o r  T,+; t h a t  is, whichever makes Q ( l , @ , O , a , l )  the 
la rges t .  

Theorem A.5:  There ex i s t s  a $+ such t h a t  f o r  a l l  v 

Q( I,$+, 1 , O , a ,  1.1 2 Q( 1,V,xi+l, O,a> 1) 

Fi r s t ,  note t h a t  

fa l se ,  then there would ex i s t  a v** such t h a t  f o r  a l l  v 

Q( l,T,+*,l,O,a,l) 2 Q( l,v,O,O,a,l) because, suppose it were * 
* 

Q(l,v**,O,O,a,l) > Q(l ,v , l ,O,a , l )  

But  from Lemma A . 3  

20 
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Therefore, a contradiction ex is t s .  Moreover, a &f can be chosen s o  t h a t  

Theorem A.6: There ex i s t s  a such tha t  f o r  a l l  v 

Q( 1,fl, 0,1> 2 Q( 1 ,v ,x i+l , l )  

F i r s t ,  note t h a t  there ex i s t s  a ** such t h a t  Q ( l , f l * , O , l )  2 Q ( l , v , l , l ) ,  be- 

cause; suppose it were false, then there would e x i s t  a v'* such t h a t  f o r  a l l  v 

Q(l,S*,l,l) > Q(l,v,O,l)  

But by Theorem A . 3  
- 

Q(l,vH,O,l) = Q(l ,v*, l , l )  
** 

Therefore, a contradiction ex i s t s .  Moreover, a ** can be chosen such t h a t  

** 
Q(l,v*,O,l) 2 Q(l ,v ,o , l )  

Therefore, 

Q ( l , * > O > l )  2 Q ( l > V > X i + l > l )  

It w i l l  now be demonstrated by an example how these theorems can be used 
t o  obtain the value of x s o  t ha t  the e r ror  i s  the maximum posit ive value. 
Consider a seven-stage BRM. By Theorem A . l  and Theorem A.2 

Q( 1, x2 > x3, x4, x5 > x6 > l-1 2 Q( xl, x2 > X3> x4> x5 > x6 > x7 

by Theorem A.6 

by Theorem A.5 

by Theorem A.5 
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by Theorem A.6 

Put t ing these inequal i t ies  together r e s u l t s  i n  

Moreover, by Theorem A.3  

Q( 1>1>0>1> O>l,l) 2 Q( ~ 1 ,  X2 > X 3 >  X 4 >  x5 I x6.' X7 

Using the theorems i n  the pa t te rn  i l l u s t r a t e d  by the  example makes it 
easy t o  ver i fy  t h a t  the maxi" posi t ive value w i l l  occur a t  the points shown 
i n  t ab le  N (p .  9 ) .  

The maximum pos i t ive  value of the e r ror  may be expressed concisely as 
follows: Let Emax(k) denote t h i s  value f o r  a k-stage BRM. If k i s  odd, 

Evaluating equation ( A 2 3 )  y ie lds  the difference equation 

L x ( k + 2 )  = Emax(k) + 3 

Solving equation ( A 2 4 )  fo r  an n-stage BRM i n  terms of Emax( l )  y ie lds  

But Emax( l )  = 1 / 2 .  

Therefore, the maximum pos i t ive  e r ro r  of an n-stage RRM, where n i s  odd, is  

7 n  1 E,,(n) = - + - - 
18 g . Zn 

(A25 

If k is  even, 

2 2  



I 

1 1 1  
3 3 2k+2 

- - Emax(k) + - - - - 

Solving t h i s  difference equation f o r  an n-stage BRM i n  terms of 
then evaluating the r e su l t an t  expression f o r  

Emax(2) and 
EmaX(2) = 3/4 y ie ld  

7 n  1 Emax(n) = - + - + 
18 6 9 . 2n 

Combining equations (A25) and ( A 2 7 )  gives a closed-form equation for the  maxi- 
mum posi t ive e r ror  of an n-stage BRM: 

E,,(n) = - 7 + - n + (-s)n 
18 6 9 . Zn 

The minimum negative value for  an n-stage BRM can be obtained by applying 
equation ( 9 ) .  Comparing the form of equation ( 7 )  with equation ( 9 )  shows t h a t  
the previous r e s u l t s  can be u t i l i z e d  with a s l i g h t  modification. 
the value of the minimum i s  equal t o  the negative of the maximum and occurs a t  
points t ha t  a r e  the 2 ' s  complement of the  maximum value. 
minimum negative values w i l l  occur a t  the points shown in  tab le  V (p .  9 ) .  

I n  par t icu lar ,  

Consequently, the 

2 3  
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APPENDIX B 

MULTIPLICATION EFiFiOR BOUNDS (ARBITRARY STARTING) 

The er ror  formulas given by equations (10) and (11) express the multiplica- 
t i on  e r ror  of a BRMwhose counter starts with an a rb i t r a ry  value. 
(10) is  the e r ro r  formula resu l t ing  when the maximum value of the  ac tua l  output 
i s  considered a t  the points of discont inui t ies .  Equation (11) is the  companion 
equation resu l t ing  when the mini" value of the  a c t u a l  output is considered a t  
these points.  
objective of obtaining e r ror  bounds for a = w i t h  t h i s  added degree of freedom. 
F i r s t ,  equation (LO) i s  analyzed t o  obtain the maximum posi t ive e r ror  of an 
n-stage BRM. 

Equation 

In  t h i s  section, these e r ro r  formulas w i l l  be analyzed with the  

It i s  convenient f o r  t h i s  discussion t o  define a vector b s o  that 

n - ~~ - 
i f  yek = % = xSk, G = C I b-ii,  where xSk denotes the complement of xSk. 

i=l 
The elements of the vector defined by equation ( B 1 )  a r e  

1 1 1 

+ . . . + -  1 1 1 
b-2 = Y-2 - (4 y-3 + 5 y-4 

Since 1 / 2  > 1/4 + . . . + l / Z n ,  
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b-k 5 0 i f  y-k = 0 

> 0 if y,k = 1 ( B 2 )  

It is next noted that each element (Xk - xsk) may have only three possible 
values; that is, 0,1, or -1. This may be ver i f ied  by d i r ec t  computation: 

A suf f ic ien t  condition f o r  G t o  a t t a i n  the  upper bound of equation ( B 4 ) ,  
n 

i=l 
t h a t  is, I b- i l ,  i s  t h a t  

= +1 i f  b-k > 0 

Combining equations (BZ) ,  ( B 3 ) ,  and ( B 5 )  r e s u l t s  i n  

>O +l 

Therefore, y-k = xk = 

A s  a consequence 

such t h a t  GmX = max 
Y 

n 

i=l 

- 
XSk is  a su f f i c i en t  condition f o r  G = C Ib-il. 

of Theorem B . l  the  maximum of G, denoted by GmX, is 
n 

i=l 
Ib-il. The procedure t o  be followed i s  t o  f ind  the 

n -~ 

value y where the  maximum of 1b-J  

function. In  order t o  a i d  t h i s  analysis  
i=l 

where Y = Y-1Y-2 Y-, and b,i(y) 

is  a t ta ined  and then evaluating t h i s  

the notation b,i(y) is introduced, 
denotes the value bei f o r  t he  vector 
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(y-1,y-z . . . y,,). For an n-stage BRM, a l l  possible b,i(Y) values may be 
obtained by multiplying M with a l l  possible values of y. T h i s  par t icu lar  
matrix is ca l led  Bn. 

_ _ _ - _ . . .  1 1 1 .  - 1\ 
0 4 8  2" 

1 0 1 -1 -- 
2 4  p-1 

1 -_ 1 

o . . .  0 1  
2 1  

( 0 0  . . . 1 1 . . . 1  

0 0  0 0  3 
. .  . .  - - . .  . .  

A f e w  examples w i l l  help c l a r i f y  equation (B6) 

Two-stage BRM: 

1 1 1  0 1 1  

B 2 = C  -;)(l )=(-;: ;) 
Three-stage BRM: 

Four-stage BRM: 

6 
1 6  

-- 7 
1 6  

-- 1 
2 
- 7 

1 6  
- 6 

1 6  
- 5 

1 6  
4 

1 6  
I 

3 
1 6  
I 

2 
1 6  
- 1 1 

4 
-- 3 

8 
-- 1 

2 
- 3 

8 
- 1 

4 
- 1 

8 
- 0 

B4 = 1 
4 

-- 1 
2 
- 1 

4 
- B3 0 0 

1 
2 
- 1 

2 B2 0 0 0 

26 
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Theorem B.2: For a l l  values of y, [bei(y)I = [ b _ ~ ( 2 ~ - y ) l .  

T h i s  r e s u l t  follows by induction on the number of stages k. It w a s  shown as 
an example f o r  the k = 2 case. Assume it i s  t rue  f o r  the k = n - 1 case 
Then the k = n case i s  

- 1  - 
2n 

Bn = 

. . .  

Bn- 1 

. .  

where t h i s  case is  par t i t ioned  t o  show i ts  s t ructure .  This theorem is  obviously 
t rue  fo r  the first row. The b - i (y )  element f o r  the n - 1 case is  now the 
b- i - l (y)  and the  b- i -1(2~ + y )  elements of the n case; and the b-i(Zn - y )  
element of the n - 1 case is  now the b-i-1(2~ - y )  and the b - i - l (2n+2n-  y) 
elements of the Bn case. By the induction hypothesis Ib-l(y)I = Ib- i (Zn-y)  
fo r  the n - 1 case. Therefore, these elements f o r  the  nth case y ie ld  

I b- i - l (y )  I = lb- i - l (2  n+l - Y ) I  ( B 7 )  

and 

Lemma B . l :  There ex i s t s  a y)c i n  the 
0 1 0 . .  . o o < p < o l l l . .  - - , 1  

I 

domain 
1 s o  t h a t  

T h i s  theorem s t a t e s  that GmX is  a t ta ined  i n  the domain 
0 1 0  . . . 0 0 - -  < y < 0 11 . . . 11. A s  a r e s u l t  of Theorem B.2, the  search 
f o r  a point where Gmax i s  a t t a ined  can be immediately r e s t r i c t e d  t o  the  y 
domain 0 < y - < 1 0  0 . . . 0 0. Consider Bn f o r  these values of y: 
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The vector 

B =  n 

' 1  -- 
2n 

2 -- 
2n 

BL 

from the Y 

1 
4 

-- 

1 
2 
- 

0 

6 

. . .  

BR 

1 
2 
- 

0 

0 

6 

vector t)* 
. . .  

. . .  

The vector can 

i s  Bn,l. Because of Theorem B.2, the  absolute values of the elements i n  BL 
are iden t i ca l  t o  the  absolute values of the  elements BR. Moreover, since the  
elements of f i rs t  row, t ha t  is, l b - l (y ) l ,  increase a s  y increases, then f o r  

there  is  a column sum t o  the r i g h t  t h a t  
each column sum t o  the l e f t  of ":) 
exceeds it. Therefore, Gmx must l i e  t o  the r igh t .  

A s  a r e s u l t  of Theorem B.2 and Lemma B. l ,  there  must be a t  l e a s t  two values 
of y where Gmx is at ta ined.  For an n-stage BRM, the  y value corre- 
sponding t o  Gm on the  l e f t  of y = 1000 . . . 00 w i l l  be ca l led  &; the 
one on the r i g h t  of y = 100 . . . 00 w i l l  be ca l led  Rn. 

Lemma B.2: For an n-stage BRM 

This r e s u l t  follows *om the  proof of Lemma B . l .  Since the  f i r s t  row; t h a t  is, 
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is  increasing, Gmax must l i e  between the r i g h t  maximum of Bn-l  and 
value of Lemma B. l .  

Lemma B.3: For an n-stage BRM 

0 1 0 0 . .  . O < L , < O l I J p 2  - - 
Consider % f o r  the values of y of Lemma B.l;  t h a t  is, 
o 1 o o . . . o < y < o 1 1 .  - -  . . 1 :  

'n =i' + 1  2n-2 

2n 

211-2 - 2 
2n-l  

- . . .  

. . .  -1 0 

The column by column sums of the  absolute value of the  elements of the 
first two rows a re  

Therefore, t h i s  i s  a decreasing sequence. 
Bn-2 a t t a i n s  a maximum f o r  a t  l e a s t  two values, then Gmax must l i e  between 
the leftmost value of Lemma B . l  and 01Ln-2. 

Since by Theorem B.2 and Lemma B . l ,  

Theorem B.3: For an n-stage BRM 

This theorem i s  the combination of Lemma B.2 and Lemma B.3.  

Theorem B.4: Rn and L, a r e  unique and ORn- l  = I& = O h - 2 .  This theorem 
follows immediately from the proofs of Lemma B.2 and Lemma B.3 by using the 
pr inciple  of strong induction as the  method of proof; tha t  is, assume it i s  
t rue  for k < n and prove for  the case k = n. The values of y where Gqx 
is a t ta ined  can be obtained by using Theorem B.4. These values a re  l i s t e d  i n  
tab le  V I I I .  

The BRM counter value and s t a r t i n g  value corresponding t o  the y values 
These values are l i s t e d  l i s t e d  i n  tab le  V I 1 1  can be obtained by Theorem B . l .  

i n  tab le  V I  (p .  10). 

An equation for  Gmx as a function of n may be obtained by a procedure 
similar t o  t h a t  used t o  obtain Emx. In  par t icu lar ,  if the pat tern established 
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TABU VIII. - VALUES OF y WHEFE Gmax IS ATllAINED 

L, 

Y - 1  * ' Y-6 

1 
01 
Oll 
0101 
01011 
010101 

Rn 

Y-1 * - . Y-6 
1 
ll 
101 
1011 
10101 
101oll 

i n  tab le  V I 1 1  is used a difference equation may be wr i t ten  f o r  n even, and a 
difference equation may be wri t ten f o r  n odd. Combining the solutions of 
these difference equations gives Gmax as a function of n: 

1 (-P Gmax(n) = - + - 
9 3 9 . 2 n  

Noting the s imi l a r i t y  between the rightmost term of equation (11) t o  tha t  of 
equation (lo), establ ishes  immediately a minimum er ror  bound when the BRM 
counter starts with an a rb i t r a ry  value: 

10 n (-l)n 
9 3 9 . 2 n  Hmin(n) >_ - - - - + 

A t i g h t  e r ror  bound may be obtained as follows: Expanding equation (11) 
gives the  equation f o r  H i n  the form 

( B11) 

I n  the i n i t i a l  value of the BRM counter, XSR ident i f ies  the rightmost 1. 
It may be simply argued tha t ,  i f  a binary number has a rightmost 1 i n  posi t ion 
R, i t s  2 ' s  complement a l so  has a 1 i n  that posi t ion and, moreover, has zeros 
a t  a l l  posi t ions j ,  where j < R.  Therefore, XSR = CSR and C s j  = 0 for a l l  
j < R. Equation (B11) may be expressed as 

or a l t e rna te ly  a s  
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Therefor e 

The upper bound of -H is attained when equality is attained in equa- 
It can be demonstrated by an argument similar to that used in tion (B14). 

Theorem B.1that the conditions for equality are 

for all j Y-j = Cj 

and 

csj = cj for all j > R 

Therefore, equation (B14) may be written as 

+ ‘SR($ % + 4 1 %+1 i- . . .) (B15) 

The last two terms in equation (B15) are always nonnegative. 
sum of these two terms is nondecreasing as R decreases. Since by Theorem A.l, 
C1 = 1 is a condition for maximizing the first term of equation (B15), it must 
also be a condition for maximizing equation (B15) itself. 

Moreover, the 

Equation (BU) may be rewritten with this condition as follows: 

Therefore, the equation for Hmin can be immediately written as: 

Hmin(n) = -1 - Gmax(n-l) = -- 10 - - n - 1 - (-l)n 
3 9 . 2n-1 9 

Based on this analysis Csl, xsl, C1, XI, and y-1 are equal to 1 for 
%in. The remaining stages are determined to maximize G for an (n - 1)-stage 
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TABLE Ix. - c, y, AND cs WHEm 

Gin IS ATTAINED 

n 

2 
3 
4 
5 
6 

n 

2 
3 
4 
5 
6 

- 

- 

- 

- 

l l  
lll 
1101 
11011 
110101 

_. .. 

cS6 * ' ' 'Sl 
-. -. 

01 
0I.l 

oo l l  
OlOll 
0010ll 

cS6 ' ' ' cS1 

01 
001 
0101 
00101 
010101 

BRM. The values of y, C, and Cs, where Hmin i s  at ta ined,  are l i s t e d  i n  
tab le  IX. The BRM counter value and the  i n i t i a l  value f o r  these %in values 
a r e  the  2 ' s  complement of the  preceding numbers. 
i n  tab le  V I I .  

These values a re  tabulated 
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